skip to main content


Search for: All records

Creators/Authors contains: "Zhou, Chi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Over the course of millions of years, nature has evolved to ensure survival and presents us with a myriad of functional surfaces and structures that can boast high efficiency, multifunctionality, and sustainability. What makes these surfaces particularly practical and effective is the intricate micropatterning that enables selective interactions with microstructures. Most of these structures have been realized in the laboratory environment using numerous fabrication techniques by tailoring specific surface properties. Of the available manufacturing methods, additive manufacturing (AM) has created opportunities for fabricating these structures as the complex architectures of the naturally occurring microstructures that far exceed the traditional ways. This paper presents a concise overview of the fundamentals of such patterned microstructured surfaces, their fabrication techniques, and diverse applications. A comprehensive evaluation of micro fabrication methods is conducted, delving into their respective strengths and limitations. Greater emphasis is placed on AM processes like inkjet printing and micro digital light projection printing due to the innate advantages of these processes to additively fabricate high resolution structures with high fidelity and precision. The paper explores the various advancements in these processes in relation to their use in microfabrication and also presents the recent trends in applications like the fabrication of microlens arrays, microneedles, and tissue scaffolds.

     
    more » « less
  2. Abstract Digital maskless lithography is gaining popularity due to its unique ability to quickly fabricate high-resolution parts without the use of physical masks. By implementing controlled grayscaling and exposure control, it has the potential to replace conventional lithography altogether. However, despite the existence of a theoretical foundation for photopolymerization, observing the voxel growth process in situ is a significant challenge. This difficulty can be attributed to several factors, including the microscopic size of the parts, the low refractive index difference between cured and uncured resin, and the rapid rate of photopolymerization once it crosses a certain threshold. As such, there is a pressing need for a system that can address these issues. To tackle these challenges, the paper proposes a modified Schlieren-based observation system that utilizes confocal magnifying optics to create a virtual screen at the camera's focal plane. This system allows for the visualization of the minute changes in refractive indices made visible by the use of Schlieren optics, specifically the deflection of light by the changing density-induced refractive index gradient. The use of focusing optics provides the system with the flexibility needed to position the virtual screen and implement optical magnification. The researchers employed single-shot binary images with different pixel numbers to fabricate voxels and examine the various factors affecting voxel shape, including chemical composition and energy input. The observed results were then compared against simulations based on Beer–Lambert's law, photopolymerization curve, and Gaussian beam propagation theory. The physical experimental results validated the effectiveness of the proposed observation system. The paper also briefly discusses the application of this system in fabricating microlenses and its advantages over theoretical model-based profile predictions. 
    more » « less
    Free, publicly-accessible full text available August 1, 2024
  3. Abstract

    Stimuli-responsive elastic metamaterials augment unique subwavelength features and wave manipulation capabilities with a degree of tunability, which enables them to cut across different time scales and frequency regimes. Here, we present an experimental framework for robust local resonance bandgap control enabled by enhanced magneto-mechanical coupling properties of a magnetorheological elastomer, serving as the resonating stiffness of a metamaterial cell. During the curing process, ferromagnetic particles in the elastomeric matrix are aligned under the effect of an external magnetic field. As a result, particle chains with preferred orientation form along the field direction. The resulting anisotropic behavior significantly boosts the sensitivity of the metamaterial’s elastic modulus to the imposed field during operation, which is then exploited to control the dispersive dynamics and experimentally shift the location and width of the resonance-based bandgap along the frequency axis. Finally, numerical simulations are used to project the performance of the magnetically-tunable metamaterial at stronger magnetic fields and increased levels of material anisotropy, as a blueprint for broader implementations of in situ tunable active metamaterials.

     
    more » « less
  4. Abstract

    Direct ink writing (DIW) process is a facile additive manufacturing technology to fabricate three-dimensional (3D) objects with various materials. Its versatility has attracted considerable interest in academia and industry in recent years. As such, upsurging endeavors are invested in advancing the ink flow behaviors in order to optimize the process resolution and the printing quality. However, so far, the physical phenomena during the DIW process are not revealed in detail, leaving a research gap between the physical experiments and its underlying theories. Here, we present a comprehensive analytical study of non-Newtonian ink flow behavior during the DIW process. Different syringe-nozzle geometries are modeled for the comparative case studies. By using the computational fluid dynamics (CFD) simulation method, we reveal the shear-thinning property during the ink extrusion process. Besides, we study the viscosity, shear stress, and velocity fields, and analyze the advantages and drawbacks of each syringe-nozzle model. On the basis of these investigations and analyses, we propose an improved syringe-nozzle geometry for stable extrusion and high printing quality. A set of DIW printing experiments and rheological characterizations are carried out to verify the simulation studies. The results developed in this work offer an in-depth understanding of the ink flow behavior in the DIW process, providing valuable guidelines for optimizing the physical DIW configuration toward high-resolution printing and, consequently, improving the performance of DIW-printed objects.

     
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  5. Abstract

    Inkjet printing (IJP) is one of the promising additive manufacturing techniques that yield many innovations in electronic and biomedical products. In IJP, the products are fabricated by depositing droplets on substrates, and the quality of the products is highly affected by the droplet pinch-off behaviors. Therefore, identifying pinch-off behaviors of droplets is critical. However, annotating the pinch-off behaviors is burdensome since a large amount of images of pinch-off behaviors can be collected. Active learning (AL) is a machine learning technique which extracts human knowledge by iteratively acquiring human annotation and updating the classification model for the pinch-off behaviors identification. Consequently, a good classification performance can be achieved with limited labels. However, during the query process, the most informative instances (i.e., images) are varying and most query strategies in AL cannot handle these dynamics since they are handcrafted. Thus, this paper proposes a multiclass reinforced active learning (MCRAL) framework in which a query strategy is trained by reinforcement learning (RL). We designed a unique intrinsic reward signal to improve the classification model performance. Moreover, how to extract the features from images for pinch-off behavior identification is not trivial. Thus, we used a graph convolutional network for droplet image feature extraction. The results show that MCRAL excels AL and can reduce human efforts in pinch-off behavior identification. We further demonstrated that, by linking the process parameters to the predicted droplet pinch-off behaviors, the droplet pinch-off behavior can be adjusted based on MCRAL.

     
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  6. Abstract

    Inkjet printing (IJP) is an additive manufacturing process capable to produce intricate functional structures. The IJP process performance and the quality of the printed parts are considerably affected by the deposited droplets’ volume. Obtaining consistent droplets volume during the process is difficult to achieve because the droplets are prone to variations due to various material properties, process parameters, and environmental conditions. Experimental (i.e., IJP setup observations) and computational (i.e., computational fluid dynamics (CFD)) analysis are used to study the droplets variability; however, they are expensive and computationally inefficient, respectively. The objective of this paper is to propose a framework that can perform fast and accurate droplet volume predictions for unseen IJP driving voltage regimes. A two-step approach is adopted: (1) an emulator is constructed from the physics-based droplet volume simulations to overcome the computational complexity and (2) the emulator is calibrated by incorporating the experimental IJP observations. In particular, a scaled Gaussian stochastic process (s-GaSP) is deployed for the emulation and calibration. The resulting surrogate model is able to rapidly and accurately predict the IJP droplets volume. The proposed methodology is demonstrated by calibrating the simulated data (i.e., CFD droplet simulations) emulator with experimental data from two distinct materials, namely glycerol and isopropyl alcohol.

     
    more » « less
    Free, publicly-accessible full text available June 12, 2024
  7. Abstract

    As a facile and versatile additive manufacturing technology, direct ink writing (DIW) has attracted considerable interest in academia and industry to fabricate three-dimensional structures with unique properties and functionalities. However, so far, the physical phenomena during the DIW process are not revealed in detail, leaving a research gap between the physical experiments and the underlying theories. Here, we presented a comprehensive simulation study of non-Newtonian ink flow during the DIW process. We used the computational fluid dynamics (CFD) method and revealed the shear-thinning behavior during the extrusion process. Different nozzle geometry models were adopted in the simulation. The advantages and drawbacks of each syringe-nozzle geometry were analyzed. In addition, the ink shear stress and velocity fields were investigated and compared in the case studies. Based on these investigations and analysis, we proposed an improved syringe-nozzle geometry towards high-resolution DIW. Consequently, the high-resolution and high shape fidelity DIW could enhance the DIW product performance. The results developed in this work offer valuable guidelines and could accelerate further advancement of DIW.

     
    more » « less